Lesson 7: Informal Proofs of Properties of Dilation

Classwork

Exercise

Use the diagram below to prove the theorem: Dilations preserve the measures of angles.

Let there be a dilation from center O with scale factor r. Given $\angle P Q R$, show that since $P^{\prime}=\operatorname{Dilation}(P)$, $Q^{\prime}=\operatorname{Dilation}(Q)$, and $R^{\prime}=$ Dilation (R), then $|\angle P Q R|=\left|\angle P^{\prime} Q^{\prime} R^{\prime}\right|$. That is, show that the image of the angle after a dilation has the same measure, in degrees, as the original.

Problem Set

1. A dilation from center O by scale factor r of a line maps to what? Verify your claim on the coordinate plane.
2. A dilation from center O by scale factor r of a segment maps to what? Verify your claim on the coordinate plane.
3. A dilation from center O by scale factor r of a ray maps to what? Verify your claim on the coordinate plane.
4. Challenge Problem:

Prove the theorem: A dilation maps lines to lines.

Let there be a dilation from center O with scale factor r so that $P^{\prime}=\operatorname{Dilation}(P)$ and $Q^{\prime}=\operatorname{Dilation}(Q)$. Show that line $P Q$ maps to line $P^{\prime} Q^{\prime}$ (i.e., that dilations map lines to lines). Draw a diagram, and then write your informal proof of the theorem. (Hint: This proof is a lot like the proof for segments. This time, let U be a point on line $P Q$ that is not between points P and Q.)

